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Abstract--- Main Stream Data Multiple Imputation is one of the main models for Missing Data Imputation in data 
stream mining, in which a fixed length of recently arrived data is considered. In a Main Stream Data Multiple 
Imputation over a transactional data stream, by the arrival of a new transaction, the oldest transaction is removed from 
the Data Stream and the new transaction is inserted into the Data Stream. The MSMIA algorithm compared with the 
Moment, a state-of-the-art incremental mining algorithm. Real-world dataset of Barclays Bank has been used and now 
fix the data stream size to 10K transactions 

Index Terms—:Missing Data, Multiple Imputation, Data Stream, transaction, MSMIA algorithm, Moment, Main 
Stream,Delay Time. 

——————————      —————————— 
 

1.INTRODUCTION 
The MSMIA algorithm relies mainly on a verifier 
function and it is an exact and efficient algorithm for 
mining very large main stream Data Multiple 
Imputation s over data streams. The performance of the 
MSMIA improves when small delays are allowed in 
reporting new Missing Data; however this delay can be 
set to 0 with a small performance overhead.Main Stream 
Data Multiple Imputation is one of the main models for 
Missing Data Imputation in data stream mining, in 
which a fixed length of recently arrived data is 
considered. In a Main Stream Data Multiple Imputation 
over a transactional data stream, by the arrival of a new 
transaction, the oldest transaction is removed from the 
Data Stream and the new transaction is inserted into the 
Data Stream. The MSMIA algorithm compared with the 
Moment, a state-of-the-art incremental mining 
algorithm. Real-world dataset of Barclays Bank has 
been used and now fix the data stream size to 10K 
transactions. 

2. COMPARISON OF MSMIA AND 
MOMENT 
2.1 Problem Statement and Notations 

Let D be the dataset to be mined (a data stream 
in our case); now then D contains several transactions, 
where each transaction contains one or more items. Let I 
= i1, i2, ..., in be the set of all such distinct items in D. 
Each subset of I is called an itemset, and by k-Data we 
mean an Data containing k different items. The 
frequency of an Data sis the number of transactions in D 
that contain Data s, and is denoted as Count(s,D). The 
support of s, sup(s,D), is defined as its frequency 
divided by the total number of transactions in D. 
Therefore, 0 ≤ sup(s,D) ≤ 1 for each Data s. The goal of 
Missing Data mining is to find all such Data s, whose 
support is greater than (or equal to) some given 
minimum support threshold α. The set of Missing Data 
in D is denoted as σα(D). 

Here now Missing Data mining is considered 
over a data stream, thus D is defined as a main stream 
Data Multiple Imputation over the continuous stream. D 
moves forward by a certain amount δ by adding the new 
Impute δ+ and dropping the expired one δ−. Therefore, 
the successive instances of D are shown as W1, W2, 
….Wn. The number of transactions that are added to 
(and removed from) each data stream is called its 
Impute size.  

 For the purpose of simplicity, it is assumed 
that all Imputes have the same size, and also each data 
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stream consists of the same number of Imputes. Thus, 
𝑛𝑛 =  |𝑊𝑊|  ∙ |𝑆𝑆| is the number of Imputes in each data 
stream, where |W| denotes the data stream size and |S| 
denotes the size of the Imputes. 

2.2 The MSMIA Algorithm  

 The Main stream Data Multiple Imputation  
Algorithm (MSMIA) always maintains a union of the 
Missing Data of all Imputes in the current data stream 
W, called Segment(S), which is guaranteed to be a 
superset of the Missing Data over W. Upon arrival of a 
new Impute and expiration of an old one, we update the 
true count of each segment in S, by considering its 
frequency in both the expired Impute and the new slide. 
To assure that S contains all Data that are frequent in at 
least one of the Imputes of the current data stream 
∪ i(σα(Si)), we must also mine the new Impute and add 
its Missing Data to S. The difficulty is that when a new 
segment is added to S for the first time, its true 
frequency in the whole data stream is not known, mostly 
since this segment wasn’t frequent in the previous n -1 
Imputes. To address this problem, MSMIA uses an 
auxiliary array, aux array, for each new segment in the 
new slide. 

The aux array now stores the frequency of a 
segment in each data stream starting at a particular 
Impute in the current data stream. In other words, the 
aux array stores the frequency of a segment for each 
data stream, for which the frequency is not known. The 
key point in this is that this counting can either be done 
eagerly or lazily. Under the laziest approach, we wait 
until a Impute expires and then compute the frequency 
of such new Data over this Impute and update the aux 
arrays accordingly.  

At the end of each slide, MSMIA outputs all 
Data in S whose frequency at that time is  ≥  𝛼𝛼 ∙  𝑛𝑛 ∙
 |𝑆𝑆|. However few Data will be missed due to the lack of 
knowledge at the time of the output, but it will then be 
reported as delayed when other Imputes expire.  

3.Max Delay Time Calculation 

Max Delay: The maximum delay allowed by 
the MSMIA is n −1 Imputes. Indeed, after expiration of 
n −1 Imputes, MSMIA will have a complete history of 
the frequency of all Missing Data of W and can report 
them. Moreover, the case in which a segment is reported 
after (n − 1) Imputes of time, is quite rare. For this to 
happen, segment’s support in all previous n −1 Imputes 
must be less than α but very close to it, say   𝛼𝛼 ∙ |𝑆𝑆| − 1, 
and suddenly its occurrence goes up in the next Impute 
to say β, causing the total frequency over the whole data 
stream to be greater than the support threshold.  

Formally, this requires that, (𝑛𝑛 − 1) ∙
(𝛼𝛼 ∙ |𝑆𝑆| −  1) +  𝛽𝛽 ≥  𝛼𝛼 ∙ 𝑛𝑛 ∙ |𝑆𝑆|which implies𝛽𝛽 ≥

 𝑛𝑛 + 𝛼𝛼 ∙  |𝑆𝑆| − 1. This is not impossible, but in however 
the real-world such events are very rare, especially 
when n is a large number (i.e., a large data stream 
spanning many slides). While MSMIA (Delay=L) 
represents an efficient incremental mining algorithm, 
counting frequencies of Data over a given dataset in n − 
L + 1 Imputes in this case.  
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Fig. 1Comparison of MSMIA and Moment 

The MSMIA algorithm compared with the 
Moment, a state-of-the-art incremental mining 
algorithm. Real-world dataset of Barclays Bank has 
been used and now fix the data stream size to 10K 
transactions. Furthermore, the support thresholds set to 
1% and vary the Impute size to measure the scalability 
of these algorithms. As shown in Figure 1  (a), (b), (c) 
and (d) MSMIA is much more scalable compared to the 
Moment algorithm. In fact, both versions MSMIA and 
MSMIA (Delay) algorithms, one with maximum data 
stream size delay and the other one without any delay, 
are much faster than Moment. The Moment algorithm is 
intended for incremental maintenance of Missing Data, 
but is not suitable for batch processing of thousands of 
transactions. The proposed algorithm however is aimed 
at maintaining Missing Data over large main stream 
Data Multiple Imputation s. In fact, the proposed 
algorithm handles a Impute size of up to 1 million 
transactions.  
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Table T1 Comparison of MSMIA, MSMIA (Delay) and Moment 
with various Impute sizes 

Real-world dataset of Barclays Bank with 21567 
instances and 21 attributes and Normalized Boeing Data 
set with 3600 instances and 129 attributes were used for 
comparing the MSMIA and the Moment. The dataset 
names, describe the data characteristics, where T is 
average transaction length, I is average segment length, 
and D signifies the number of transactions. Table T1 
lists out the values for running time comparison 
betweenMSMIA, MSMIA (Delay) and Moment with 
different delay rate. 

4.CONCLUTION 
 
         MSMIA and MSMIA (Delay) algorithms, one 
with maximum data stream size delay and the other one 
without any delay, are much faster than Moment. The 
Moment algorithm is intended for incremental 
maintenance of Missing Data, but is not suitable for 
batch processing of thousands of transactions. The 
proposed algorithm however is aimed at maintaining 
Missing Data over large main stream Data Multiple 
Imputation s. In fact, the proposed algorithm handles a 
Impute size of up to 1 million transactions.  
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